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In a plane-channel displacement flow of two visco-plastic fluids, it is possible for
there to be a static residual layer of the displaced fluid left stuck to the walls of
the channel. This phenomenon provides an idealized model for the formation of a
wet micro-annulus, due to poor mud removal, during the primary cementing of an
oil well. Using a lubrication approximation, it is shown that sufficient conditions for
the non-existence of a static wall layer can be computed simply in terms of two
dimensionless parameters: the Bingham number for the displacing fluid (B1) and the
ratio of the yield stresses of the two fluids (ϕY ). When these conditions are not met,
it is possible to compute the maximum possible static wall layer thickness hmax, which
depends on B1, ϕY and on a third dimensionless parameter ϕB , a buoyancy to yield
stress ratio.

On computing displacements using the lubrication approximation, the interface is
observed to asymptotically approach the maximum static layer thickness as t → ∞.
Results from fully two-dimensional displacement computations are also presented.
These indicate that the displacement front propagates at a steady speed along the
channel, leaving behind a static layer which is significantly thinner than hmax. Surpris-
ingly, the computed static layer thickness is observed to decrease with a parametric
increase in the dimensionless yield stress of the displaced fluid. To explain these results
we analyse the streamline configuration close to a steadily advancing displacement
front. We demonstrate heuristically that the local visco-plastic dissipation functional
will be approximately minimized by a critical layer thickness at which the displaced
fluid begins to recirculate ahead of the displacement front. Comparison of the critical
recirculation limit with the static layer thickness computed from the fully transient
model gives a very close agreement, suggesting that a form of energy minimization is
responsible in this case for selecting the static layer thickness.

1. Introduction
When a visco-plastic fluid flowing in a plane channel is displaced by a second

visco-plastic fluid it is possible for there to be a static residual layer of the displaced
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fluid left stuck to the walls of the channel. This can occur only when the yield
stress of the displaced fluid is larger than that of the displacing fluid. This is an
essentially mechanical effect, which results when the yield stress of the displaced fluid
is not exceeded at the wall of the channel. The study of this phenomenon is the
focus of this paper. The principal question is: when can a static layer exist and what
is its thickness? The practical importance of static residual layers in visco-plastic
displacements stems from the process of mud removal during primary cementing of
an oil well (as explained in § 1.2).

For simplicity, the two visco-plastic fluids are modelled as Bingham fluids. The fluids
and displacement rates are assumed to be such that, although miscible, the fluids do
not mix significantly on the timescale of the displacement. We also consider only flows
for which the displacement front is symmetric with respect to the channel centreline.
As such, the problem is one of the class of finger width selection problems typified by
the well known Saffman–Taylor problem, (see for example Saffman & Taylor 1958;
Saffman 1986; or the recently studied miscible version, Mineev-Weinstein 1998). There
have been a number of recent studies of miscible displacements with Newtonian fluids
in long ducts, without necessarily assuming a Hele-Shaw displacement. Those that
focus on the high Péclet number limit of low miscibility are closest to our work (see
for example Chen & Meiburg 1996; Lajeunesse et al. 1997, 1999; Lajeunesse 1999;
Petitjeans & Maxworthy 1996; Yang & Yortsos 1997). Our approach is also partly
motivated by the wish to avoid the complexities of modelling the physical properties
of fluid mixtures when significant diffusion takes place (see for example Rogerson &
Meiburg 1993a, b; Yortsos & Zeybek 1988; Zimmerman & Homsy 1991). Finally, in
adopting a classical incompressible concentration-diffusion approach, we also ignore
possible effects of Korteweg stresses and the effects of assuming a divergence-free
velocity close to the displacement front. These effects are discussed by Joseph &
Renardy (1993) and are hard to evaluate precisely.

Our intention is not to generalize the above Newtonian fluid studies (which are
already complex) to the case of two passively advected Bingham fluids. Important
phenomenological differences from the Newtonian fluid–fluid displacements exist.
First, in a visco-plastic fluid–fluid displacement the residual wall layers are completely
static. Second, the fully two-dimensional displacement allows properly steady finger
propagation, i.e. of uniform width. Finally, the displacements considered are not
Hele-Shaw displacements.

All Bingham fluid flow problems contain free surfaces, i.e. yield surfaces, and in
this sense there is a weak analogy between the flow of a single Bingham fluid and
any other free boundary problem. However, for simple transient Bingham flows the
direct analogy is with a particular variant of the Stefan problem (see for example
Comparini 1992; Frigaard, Howison & Sobey 1994). In geometries of large aspect
ratio, as here, one is tempted to use lubrication-like approximations. Although such
approximations do generally lead to valid approximations of the velocity field, the
yield surfaces are often not well predicted. The underlying problem arises because the
scaling arguments used to derive the leading-order momentum equations are not valid
for velocity gradient terms in the unyielded flow regions. Two methodologies appear
to correctly determine yield (and pseudo-yield) surface positions: that of Wilson and
co-workers (Wilson 1993a, b; Wilson & Taylor 1996), and that used by Walton &
Bittleston (1991).

Bingham fluid flows in which a second free surface or interface is involved have
also been studied, and give rise to interesting physical phenomena. For example,
free-surface flow of a Bingham fluid down a slope is studied in Liu & Mei (1989,
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1994), wherein it is shown that, due to the plastic behaviour, a travelling localized
pressure pulse can leave behind a permanent footprint. Footprinting of the static wall
layers studied in this paper is also possible. The Saffman–Taylor fingering problem
for a Bingham fluid has been considered by Alexandrou & Entov (1997) (see also
the brief discussion in Wilson 1990), and shows that the fluid not displaced in a
Hele-Shaw cell is properly static, i.e. between the propagating fingers. Although here
we do not adopt the simplifications of the Hele-Shaw approach, the phenomenon
of a static residual layer is quite analogous. In porous media or Hele-Shaw cells,
visco-plastic displacements form one of a class of non-Darcy flows. Pascal has con-
sidered the displacement of oil in a reservoir by a visco-plastic fluid, see Pascal
(1984a, b, 1986). Relevant non-Darcy flows are also described in Barenblatt, Entov
& Ryzhik (1990). Flows of multiple Bingham fluids are not well understood and do
not appear commonly in the open literature. A systematic study of flows that are
associated with mechanical stability of a buoyancy-driven flow of two Bingham fluids
is undertaken in Frigaard (1998), Frigaard & Scherzer (1998), Frigaard & Crawshaw
(1999), Fenie & Frigaard (1999) and Frigaard & Scherzer (2000). However, these
flows differ from those considered here in being axial flows in bounded domains
satisfying a zero net flow rate constraint. The problems considered are mostly re-
lated to prescribing sufficient yield stresses in the two fluids in order to stop the
flow.

1.1. Outline

The displacement flows we describe are extremely complex to study in generality.
Thus, in this paper we focus exclusively on those displacements that leave behind
a static residual wall layer of the displaced fluid. We apply a number of different
analyses, all with the single aim of understanding for which dimensionless parameter
values a static wall layer can exist and to try to predict its thickness. These questions
have a practical industrial motivation, described in § 1.2, following.

Section 2 introduces the general displacement model that we wish to understand.
The first analysis that yields relevant information is to consider an axial two-layer
flow; see § 3. This simplified model helps to clarify exactly what is meant by a static
residual wall layer and how this phenomenon arises naturally in a displacement. In
parts of the displacement flow where the streamlines are near-axial, the axial two-layer
model also provides the basis for a lubrication model of interface motion. It is shown
that interface motion governed by the lubrication model will asymptotically approach
the maximum possible static wall layer thickness; see § 3.3. We explore the parametric
variation of the maximum static layer.

In § 4 we test the hypothesis that the maximum static layer thickness gives a
good prediction of the actual static layer thickness, as computed from a fully two-
dimensional transient model. A comparison is made over a wide range of dimension-
less parameters, showing a large discrepancy between these two models.

A simple explanation for the difference is that the two-dimensional displacement
flows generate larger shear stresses close to the displacement front than do the
lubrication displacement flows. Since the maximal static layer represents the situation
where the yield stress of the displaced fluid is attained exactly at the wall of the
channel, any larger stresses generated must result in a thinner layer.

Although correct, this explanation does not lead to a simple prediction of static
layer thickness for fully two-dimensional displacements. To this end, in § 5 we analyse
a model for a steadily propagating two-dimensional displacement, leaving behind a
uniform static layer. For this model, we show that the displaced fluid will recirculate
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Figure 1. Primary cementing of an oil well. Fluid–fluid displacement in a narrow eccentric
annulus. An azimuthal section of the annulus modelled simplistically as a long slot.

ahead of the displacement front for a sufficiently thin static layer. We argue heuristi-
cally that the visco-plastic dissipation rate, in the two-dimensional region local to the
advancing displacement front, will be minimized by a static layer thickness that is just
above the maximal layer for which recirculation occurs. This recirculation limiting
layer thickness is found to give a very good quantitative prediction of computed static
layer thickness over a range of dimensionless parameters; see § 5.2. The paper ends
with a brief summary and discussion in § 6.

1.2. Primary cementing of an oil well

The potential for there to exist static residual layers of displaced visco-plastic fluid
is of enormous practical significance in the primary cementing of an oil well. In
this process a sequence of fluids are pumped through a narrow eccentric annulus in
an effort to displace the drilling mud (for process details see Guillot et al. 1990;
Smith 1987). The displacing fluid is typically either a spacer fluid or the leading
cement slurry. The annular gap is formed by the outside wall of the steel casing,
which is to be cemented in place, and the inside wall of the drilled rock formation,
see figure 1. The practical problem with leaving a mud layer on the walls of the
annulus occurs when the cement slurry sets. The layer of mud that is left stuck to
the walls of the annulus can extend axially along the annulus, connecting different
fluid-bearing regions of the rock formation: a so-called wet micro-annulus. This mud
layer is typically much more permeable than the set cement, and particularly so in
the case of a water-based drilling mud since the process of cement setting is strongly
exothermic and also hydrophilic. Zonal isolation is destroyed by the micro-annular
layer and the consequent pressure drop in the oil reservoir can severely damage the
productivity of the well; see Economides (1990).

A number of workers have analysed the axial flow of visco-plastic fluids in an
eccentric annulus (see for example Szabo & Hassager 1992; Walton & Bittleston 1991).
However, these studies are confined to axial flows of a single fluid. For Newtonian
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displacements, three-dimensional displacement simulations have also been carried out
by Szabo & Hassager (1997). In cementing, typical ratios of mean annular gap to
mean diameter are < 0.1 and the ratio of mean annular gap to an axial length
scale (here taken as the length of a casing stand) is ≈ 0.002. Thus, representing the
narrow annulus as an azimuthal series of long plane channels (slot-approximation)
is quite reasonable, and is a common practice in modelling cementing flows. Whilst
this ignores azimuthal flows, it provides a key building block for understanding the
annular displacement. Only laminar displacements are considered. Different pumping
rates are employed in primary cementing, but often turbulent flow is not attainable.
In an eccentric annulus the fluids move significantly slower on the narrow side of
the annulus than on the wide side (even stopping). Poor mud removal is commonly
associated with the narrow side of the annulus. Typical (narrow side) velocity scales
Û0 would be between 1 and 30 cm s−1. The annular-gap length scale is D̂ ∼ 1 cm.

The fluids involved can be modelled as visco-plastic generalized Newtonian fluids,
(e.g. Bingham fluids, Herschel–Bulkley fluids, Casson fluids). Spacers do not always
exhibit a yield stress, visco-elasticity can be important in different situations and,
when static, a gel strength usually develops in the mud. These complications apart,
visco-plasticity is a key feature of these fluids and is that feature believed to be
most relevant to the phenomenon of static wall layers. The simplified characterization
of these fluids by the Bingham fluid model is used regularly in the oil industry.
Validity of the assumption of miscibility depends on whether the two fluids are
water-based or oil-based, but is often the case. When miscible, the Péclet number
is in the range Pe > 106. Densities of the fluids can range anywhere between 1000
and 2000 kg m−3, with typical density differences between displacing and displaced
fluids in the range 50–300 kg m−3. Characteristic yield stresses are of the order of 1 to
20 Pa and plastic viscosities commonly in the range 5 to 100 cP. Extreme rheological
parameters can also occur and an underlying reason for studying this phenomenon
is to assess in which ways badly conditioned fluids can affect the mud removal
process.

2. Laminar two-dimensional miscible displacements
We consider a two-dimensional geometry between two parallel plates, separated by

a distance 2D̂, i.e. a slot. The slot is initially filled with fluid 2, which is displaced by
fluid 1, injected at x̂ = 0 with a mean velocity û(0, t̂ ) = (Û0, 0). Cartesian coordinates
(x̂, ŷ) are as shown in figure 1. The scale of the slot in the x̂-direction is assumed to
be such that x̂ ∼ L̂, where D̂ � L̂.

The densities of the fluids are denoted ρ̂k: k = 1, 2. Iso-density (ρ̂1 = ρ̂2) or buoyant
displacements (ρ̂1 > ρ̂2) will be considered. We restrict attention to situations where
the displacement flow is symmetric about the slot centreline ŷ = 0. Physically, this
assumption corresponds to a buoyant upward displacement in a vertical slot, or
to an iso-density displacement in a slot of any orientation. The displacement flows
are always assumed laminar and the symmetry assumption implies that inertial
effects are not dominant, (i.e. in the sense that we are assuming no symmetry-
breaking of the basic flow), but not necessarily negligible either. Although miscible,
the case of zero diffusion is considered, which is formally equivalent to an immiscible
displacement with no surface tension. In this case, the two fluids are delineated by
a sharp interface, which can be modelled straightforwardly with either a kinematic
equation or by a passive scalar (concentration) that is advected with the fluid (no
diffusion).
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The velocity, pressure and deviatoric stress are denoted û(x̂, t̂ ) ≡ (û, v̂) ≡ (û1, û2),
p̂k(x̂, t̂ ) and τ̂k,ij , respectively. The equations of motion, valid within each fluid region
Vk, k = 1, 2, are

ρ̂k

[
∂û

∂t̂
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ

]
= −∂p̂k

∂x̂
+

∂

∂x̂
τ̂k,xx +

∂

∂ŷ
τ̂k,xy − ρ̂kĝ, (2.1)

ρ̂k

[
∂v̂

∂t̂
+ û

∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ

]
= −∂p̂k

∂ŷ
+

∂

∂x̂
τ̂k,yx +

∂

∂ŷ
τ̂k,yy, (2.2)

∂û

∂x̂
+
∂v̂

∂ŷ
= 0. (2.3)

On the wall of the slot the no-slip condition is satisfied:

û(x̂, D̂) = 0, (2.4)

and on the centreline, from the assumption of symmetry:

∂û

∂ŷ
(x̂, 0) = v̂(x̂, 0) = 0. (2.5)

The interface is denoted ŷ = Ŷ i(x̂, t̂ ), and is simply advected with the flow:

∂Ŷ i

∂t̂
+ û

∂Ŷ i

∂x̂
= v̂. (2.6)

Across the interface, velocity and stress are continuous.

The rheologies assumed are those of Bingham fluids. Rate of strain and deviatoric
stress second invariants, ˆ̇γ(û) and τ̂k(û) respectively, are defined by

ˆ̇γ(û) =

[
1

2

2∑
i,j=1

[ ˆ̇γij(û)]
2

]1/2

, (2.7)

τ̂k(û) =

[
1

2

2∑
i,j=1

[τ̂k,ij(û)]
2

]1/2

, (2.8)

where

ˆ̇γij(û) =
∂ûi

∂x̂j
+
∂ûj

∂x̂i
. (2.9)

Constitutive laws for the Bingham fluids are

ˆ̇γ(û) = 0⇐⇒ τ̂k(û) 6 τ̂k,Y , x̂ ∈ Vk, (2.10)

τ̂k,ij(û) =

[
µ̂k +

τ̂k,Y
ˆ̇γ(û)

]
ˆ̇γij(û)⇐⇒ τ̂k(û) > τ̂k,Y , x̂ ∈ Vk. (2.11)

The constants µ̂k and τ̂k,Y are the plastic viscosity and yield stress, respectively, for
each fluid; k = 1, 2. These parameters are assumed to be strictly positive.
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2.1. Scaled equations

Dimensionless equations are defined via the following scaling:

x̂ = D̂x, û = Û0x,

t̂ =
D̂

Û0

t, ˆ̇γij =
Û0

D̂
γ̇ij ,

p̂k = ρ̂2Û
2
0pk, τ̂k,ij = ρ̂2Û

2
0τk,ij ,

Ŷ i = D̂Yi.


(2.12)

The equations of motion are

rk

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]
= −∂pk

∂x
+

∂

∂x
τk,xx +

∂

∂y
τk,xy − rk

F
, (2.13)

rk

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]
= −∂pk

∂y
+

∂

∂x
τk,yx +

∂

∂y
τk,yy, (2.14)

∂u

∂x
+
∂v

∂y
= 0. (2.15)

The kinematic equation for the interface is:

∂Yi

∂t
+ u

∂Yi

∂x
= v, (2.16)

and scaled constitutive laws are now

γ̇(u) = 0⇐⇒ τk(u) 6 τk,Y , x ∈ Vk, (2.17)

τk,ij(u) =

[
µk +

τk,Y

γ̇(u)

]
γ̇ij(u)⇐⇒ τk(u) > τk,Y , x ∈ Vk. (2.18)

Noting that r2 ≡ 1, there are six dimensionless parameters in (2.13)–(2.18): the
density ratio r

r ≡ ρ̂1

ρ̂2

= r1, (2.19)

the Froude number

F ≡ Û2
0

ĝD̂
, (2.20)

and the dimensionless yield stresses and plastic viscosities

τk,Y ≡ τ̂k,Y

ρ̂2Û
2
0

, µk ≡ µ̂k

ρ̂2Û0D̂
. (2.21)

The boundary and interface conditions are unchanged, but note that the choice of
velocity scale implies that u has unit mean value. Values of the six dimensionless
parameters r, F , τk,Y , µk , k = 1, 2, that might be found in a typical cementing process
are hard to define precisely, due to the wide range of fluid properties and variations
in D̂ and Û0 at different azimuthal positions in an eccentric annulus. However, we
only seek to study the phenomenon of a static wall layer. For our computations we
have implicitly assumed r > 1, F ∼ 10−3–10−1, τk,Y ∈ [0.05, 5], µk ∈ [0.0005, 0.1], for
both k = 1 and 2; moreover, τ2,Y > τ1,Y and µ2 > µ1 is common for static wall layers.
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3. Axial displacement flows
The principal aim of the paper is to understand the phenomenon of a static residual

wall layer left behind after an incomplete displacement. The first useful analysis comes
from considering axial two-layer flows. For flows in long ducts, it is quite natural
to consider situations when the streamlines and interface align approximately with
the duct walls. Even in two-dimensional displacement flows there are likely to be
parts of the flow which are near-axial, e.g. when the displacement front has passed a
given point and the interface elongates behind the front. Thus, axial two-layer flows
represent a good starting point at which to develop our understanding of static wall
layer solutions to equations (2.13)–(2.18).

We first examine the range of possible velocity profiles for a two-layer flow. This
leads naturally to the definition of a maximal static residual wall layer in § 3.2. In
§ 3.3, we consider an axial displacement model that is based on the two-layer flow
and show that, for dimensionless parameter values that allow static wall layers, the
interface approaches the maximal static layer thickness asymptotically. Thus, for such
a model of the displacement process, the maximal layer is an excellent prediction
of the actual layer thickness observed in a transient displacement. More realistic
displacement models are treated in § 4 and following.

3.1. Two-layer flows

It is straightforward to derive an axial two-layer model from (2.13)–(2.18). At leading
order there is no pressure gradient across the slot and the x-momentum equations
describe an axial two-fluid shear flow:

d

dy
τ1,xy = b− f, y ∈ [0, Yi), (3.1)

d

dy
τ2,xy = −f, y ∈ (Yi, 1]. (3.2)

Here the interface position is denoted simply by y = Yi. The two new parameters are
b, the buoyancy number, and f the modified pressure gradient:

b ≡ r − 1

F
, f ≡ −dp

dx
− 1

F
. (3.3)

Equations (3.1) and (3.2) are solved to give the leading-order axial velocity, (u, v) ∼
(U(y), 0), using the following boundary and interface conditions:

τ1,xy(0) = 0, (3.4)

τ1,xy(Yi) = τ2,xy(Yi), (3.5)

U(Y +
i ) = U(Y −i ), (3.6)

U(1) = 0. (3.7)

Simplified constitutive equations are

|Uy| = 0⇐⇒ |τk,xy| 6 τk,Y , (3.8)

τk,xy =

[
µk +

τk,Y

|Uy|
]
Uy ⇐⇒ |τk,xy| > τk,Y . (3.9)
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Because the velocity scaling has been chosen as the mean displacement velocity, the
following condition must also be satisfied:∫ 1

0

U(y)dy = 1. (3.10)

Constraint (3.10) is used to define f and the solution to (3.1)–(3.10) is consequently
the pair (U, f). The results in Frigaard & Scherzer (1998) can be applied to show
that there exists a unique solution (U, f) to this system for each value of Yi ∈ [0, 1].
Integrating (3.1) and (3.2) gives

τ1,xy = (b− f)y, y ∈ [0, Yi], (3.11)

τ2,xy = bYi − fy, y ∈ (Yi, 1]. (3.12)

The velocity profiles that result from these stress distributions depend entirely on
the intercept of the linear stress functions with the two yield stress values, i.e. where
τk,xy = ±τk,Y . There is clearly a limited number of configurations that give rise to
qualitatively different velocity profiles. For completely arbitrary values of f and b,
without the constraint (3.10), there are in fact 21 qualitatively different velocity profiles
possible (excluding marginal cases where either f = 0 or f = b).

Here we are interested primarily in flows for which a flow rate is imposed, see
(3.10), for which the displacing fluid is heavier than the displaced fluid (b > 0), and
for which both fluids are being pushed in the positive direction (f > b). Under such
conditions, only four qualitatively different velocity profiles remain feasible. These are
shown schematically in figure 2.

The velocity profile shown in figure 2(a) is unique amongst those in figure 2, in
that fluid 2, adjacent to the wall at y = 1, does not move. The yield stress of fluid 2 is
not exceeded at the wall, or anywhere within the fluid-2 layer, and the condition of
no-slip accomplishes the rest. This velocity profile is the archetypal static-wall-layer
velocity profile that we study throughout this paper.

Static layers in a two-layer flow are relatively easy to find in the parameter space
(b, τk,Y , µk): k = 1, 2. In essence they occur if the yield stress of fluid 2 is significantly
larger than that of fluid 1. However, for given rheological parameters not every
interface position can give a static wall layer. Suppose that (3.10) is satisfied and the
set of rheological parameters (b, τk,Y , µk): k = 1, 2, are fixed. Typically, the velocity
profiles close to Yi = 0 resemble those in figure 2(c). For intermediate values of Yi the
double Bingham–Poiseuille profile of figure 2(b) is commonly found and close to the
wall figure 2(a) is found. The profile in figure 2(d) is a variant of figure 2(b), observed
if τ2,Y is relatively weak.

3.2. Maximum static wall layer thickness

Suppose that we have fixed dimensionless parameters (b, τk,Y , µk): k = 1, 2, for which
a velocity profile such as that in figure 2(a) exists if Yi ∼ 1. Now consider the variation
in this velocity profile as Yi decreases. Imposing the constraint (3.10) means that the
same flow rate of fluid 1 is forced through a progressively narrower gap. As the gap
narrows, if fluid 2 remains static, the modified pressure gradient f increases (for a
Newtonian fluid: f ∼ Y −1

i , and f → ∞ faster for a Bingham fluid). For each Yi, the
wall shear stress τw ≡ τ2,xy(1) is given by

τw = −f + bYi, (3.13)
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(a) (b) (c) (d )
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Figure 2. Schematic of the different possible characteristic axial velocity profiles for positive
buoyant displacements (f > b > 0).

and thus τw ∼ −f → −∞ as Yi → 0. For small enough Yi any finite τ2,Y will be
exceeded by the wall shear stress. In other words, there will be a minimal interface
position Yi,min for which the fluid-2 layer is able to remain static. The thickness of the
maximum possible static wall layer, hmax, is formally defined by

hmax ≡ 1− Yi,min. (3.14)

It is easy to determine the value of Yi,min (i.e. hmax) for any set of parameters.
With reference to figure 2(a), it can be seen that when a static layer exists, the

velocity profile is equivalent to that of a single Bingham fluid flowing through a
slot of half-width Yi. Denote by f0(Yi) the value of the modified pressure gradient
necessary to force a unit flow rate of fluid 1 through a slot of half-width Yi. Thus,
(U, f0) satisfies

d

dy
τ1,xy = b− f0, y ∈ [0, Yi], (3.15)

τ1,xy(0) = 0, (3.16)

U(Yi) = 0, (3.17)∫ Yi

0

U(y)dy = 1. (3.18)

The solution (U, f0) of (3.15)–(3.18) is identical to the restriction to y ∈ [0, Yi] of the
solution (U, f) of the full problem (3.1)–(3.10), provided that there exists a static wall
layer in fluid 2.

The absolute value of the shear stress increases throughout the fluid-2 layer, so that
the yield stress in fluid 2 will be first exceeded at the wall. It follows that a necessary
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and sufficient condition for there to be static wall layer solutions is that

f0(1)− b < τ2,Y , (3.19)

and that Yi,min will be defined by

f0(Yi,min)− Yi,minb = τ2,Y . (3.20)

The solution to (3.15)–(3.17) is well known. For Yi(f0 − b) > τ1,Y , the positive (areal)
flow rate, q1,single, is given by

q1,single(Yi, f0) =
[2Yi(f0 − b) + τ1,Y ][Yi(f0 − b)− τ1,Y ]2

6µ1(f0 − b)2
. (3.21)

In order that (3.18) be satisfied, q1,single(Yi, f0) = 1, for any Yi > Yi,min. After a little
algebra, f0(Yi) is found from

(f0 − b)Yi
τ1,Y

= ξ(B̃1), (3.22)

where B̃1 is a modified fluid-1 Bingham number, defined by

B̃1 = Y 2
i

τ1,Y

µ1

, (3.23)

and ξ(B) is the only root of

2ξ3 − (3 + 6/B)ξ2 + 1 = 0, (3.24)

lying in ξ(B) > 1 for B > 0. It is straightforward to see that

(1 + 2/B) < ξ(B) < 3
2
(1 + 2/B), (3.25)

and hence ξ(B) is easily computed, see figure 3. Differentiating (3.24) gives

dξ(B)

dB
=

ξ(B)

B2[(1 + 2/B)− ξ(B)]
< 0. (3.26)

Thus, f0 − b is seen to depend on three parameters: the interface position Yi, the
fluid-1 yield stress and the fluid-1 Bingham number B1:

B1 =
τ1,Y

µ1

. (3.27)

Note that (f0 − b)/τ1,Y decreases monotonically as a function of each of (Yi, B1).

We can rewrite ξ(B̃1) ≡ ξ(B1, Yi), using (3.23) and (3.27). Returning to (3.20), we
divide through by τ2,Y to finally give

τ1,Y

τ2,Y

ξ(B1, Yi,min)

Yi,min
+ (1− Yi,min) b

τ2,Y

= 1. (3.28)

From (3.28) it follows that the maximum layer thickness is governed only by three
dimensionless parameters:

ϕY =
τ1,Y

τ2,Y

≡ τ̂1,Y

τ̂2,Y

, (3.29)

B1 =
τ1,Y

µ1

≡ τ̂1,Y D̂

µ̂1Û0

, (3.30)
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Figure 3. The function 1/ξ(B) plotted against 1/B.

ϕB =
b

τ2,Y

≡ (ρ̂1 − ρ̂2)ĝD̂

τ̂2,Y

. (3.31)

Note that since fluid 1 must yield in the case of a static wall layer, ϕY < 1. The
Bingham number B1 compares plastic and viscous stresses in fluid 1. The ratio ϕB
measures the buoyancy force (stress) against the ability of the fluid-2 layer to resist
motion. Figure 4 shows the variation in hmax with the parameters ϕY and 1/B1 for
four fixed values of the ratio ϕB . The shaded area marks the limit where no static
wall layers are possible. Increasing either ϕY or ϕB decreases the maximum static
wall layer, whilst increasing B1 has the effect of increasing hmax. Note that an increase
in B1, while leaving τ1,Y fixed, necessitates a decrease in the plastic viscosity of fluid
1, decreasing the shear stress.

The critical condition (3.19), defining whether or not there can exist a static wall
layer, is seen to be entirely independent of the buoyancy ratio ϕB , and is given very
simply by

ϕY =
1

ξ(B1, 1)
, (3.32)

i.e. for each fluid-1 Bingham number B1 there is a critical yield stress ratio, above
which no static wall layer can persist. Physically, the number 1/ξ(B1, 1) will give the
ratio of the fluid-1 yield surface thickness to the slot width, in a Bingham–Poiseuille
flow of fluid 1 with mean velocity Û0, that occupies the entire slot. The ratio ϕY
must exceed this geometric ratio for there to be no static wall layer. Figure 5 plots
the critical curve (3.32).

3.3. Interface propagation for axial displacements

Having defined hmax via the two-layer model, the question arises as to whether or not
hmax provides an indication of the static layer thickness observed in any physically
realistic displacement. In situations where the interface and streamlines are near-
axial, a simple model for interface motion can be derived. The interface position is
denoted y = Yi(x, t) and the interface is a material surface that moves according to
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Figure 4. Maximal static wall layer hmax for ϕY ∈ [0.001, 1], 1/B1 ∈ [0.001, 0.1]; contours spaced at
intervals ∆hmax = 0.05: (a) ϕB = 0.0; (b) ϕB = 0.5; (c) ϕB = 1.0; (d) ϕB = 2.0.

the kinematic equation:

∂Yi

∂t
+U

∂Yi

∂x
= V . (3.33)

Here the axial velocity U comes from (3.1)–(3.10) and the cross-stream velocity
component V can then be reconstructed from

∂V

∂y
= −∂U

∂x
. (3.34)

This approach is very classical: (x, t)-dependence enters into (3.1)–(3.10) only through
the interface position, i.e. U(x, y, t) ≡ U(Yi(x, t), y). Combining (3.33) and (3.34) leads
to the following first-order hyperbolic equation:

∂Yi

∂t
+

∂

∂x
q1(Yi) = 0, (3.35)

where the flux function q1(Yi) is defined by

q1(Yi) ≡
∫ Yi

0

U(x, y, t)dy. (3.36)

We now solve equation (3.35) for parameters (b, τk,Y , µk): k = 1, 2, for which velocity
profiles such as in figure 2(a) can result.

Numerically, we construct q1(Yi) by solving the system (3.1)–(3.10) for NYi = 100
evenly spaced values of Yi ∈ [0, 1] and then by using linear interpolation. Equation
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Figure 5. Critical yield stress ratio ϕY below which a static layer can exist, plotted against B1;
static layers exist in the shaded region.

(3.35) is integrated from given initial conditions. The method we use for (3.35) is due
to Cockburn & Shu (1994) and is a compact differencing scheme that is nonlinearly
stable and third order in both time and space. The solutions to (3.35) often become
discontinuous in time (i.e. shocks form) and the method in Cockburn & Shu (1994)
is designed to be shock-capturing. Apart from the test problems in Cockburn &
Shu (1994), this method has been used previously in Fenie & Frigaard (1999) for a
similar problem of interface propagation with shock discontinuities and was found to
perform well.

Examples of iso-density displacements are shown in figures 6 and 7, for two different
parameter sets:

(b, τ1,Y , τ2,Y , µ1, µ2) = (0, 0.2, 0.5, 0.01, 0.05),

(b, τ1,Y , τ2,Y , µ1, µ2) = (0, 0.2, 1.0, 0.005, 0.01).

We have used initial conditions:

Yi(x, 0) =


1, x < 1

2− x, x ∈ [1, 2]

0, x > 2.

Figures 6 and 7 show the interface positions at successive time intervals, as indicated.
The functions q1(Yi), f(Yi) and τi(Yi) are also shown, the latter denoting the interfacial
shear stress.

As the interface propagates it clearly approaches a certain layer thickness (the
approach is much slower in figure 6 than in figure 7). This interface position is that
at which q1(Yi) → 1. We recall that the solution (U, f0) of (3.15)–(3.18) is identical
to the restriction to y ∈ [0, Yi] of the solution (U, f) of (3.1)–(3.10), for exactly those
interface positions that admit a static wall layer. By definition, q1(Yi) = 1 for these
interface positions. We can therefore conclude that the limiting interface position is
Yi = Yi,min, i.e. the maximum layer thickness is approached by the interface, as is
confirmed numerically. Additionally, at the limiting layer thickness, q′1(Yi) → 0, and
therefore the approach of Yi → Yi,min is asymptotic as t→∞.
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Figure 6. Axial displacement for (b, τ1,Y , τ2,Y , µ1, µ2) = (0, 0.2, 0.5, 0.01, 0.05). The functions q1(Yi),
f(Yi) and τi(Yi). Interface propagation plotted every 100 timesteps; computation on a mesh of size
∆z = 0.02 with a timestep ∆t = 0.0035.
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Figure 7. Axial displacement for (b, τ1,Y , τ2,Y , µ1, µ2) = (0, 0.2, 1.0, 0.005, 0.01). The functions q1(Yi),
f(Yi) and τi(Yi). Interface propagation plotted every 200 timesteps; computation on a mesh of size
∆z = 0.02 with a timestep ∆t = 0.0015.
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In both figures 6 and 7 the central part of the displacement front (small Yi) is
propagating as a shock discontinuity. Smoothing effects observed in figures 6 and 7,
both close to the shock and close to the inflow, are a numerical effect characteristic of
the scheme in Cockburn & Shu (1994) (and many other shock-capturing methods).
Note that for small Yi the solution f(Yi) is constant. For these interface values the
axial velocity profile is schematically as in figure 2(c); fluid 1 is entirely unyielded, as
is fluid 2 at the interface, and it is irrelevant which fluid occupies the central part of
the channel. The decline in f(Yi) marks the transition from axial solutions as shown
in figure 2(c) to those shown in figure 2(b). The transition to static layer solutions
(figure 2a) takes place, as discussed above, as Yi → Yi,min. An interesting feature of
these figures is that there appears to be a local minimum in the function τi(Yi) at
Yi ∼ Yi,min.

4. Two-dimensional transient computations
The analysis in § 3 suggests that, for any displacement flow that leaves behind

a static wall layer of fluid 2, the static layer thickness h should not exceed hmax,
within any essentially uni-directional region of flow. The analysis also leaves open the
following three important questions:

(i) Although the interfaces in § 3.3 approach hmax at large times, does hmax predict
the static residual layer thickness in more realistic displacement flows?

(ii) If a static wall layer is found, with thickness h < hmax, how is the thickness h
selected?

(iii) Do static wall layers always exist if hmax > 0?
In this section we present the results of a series of transient two-dimensional displace-
ment computations, which begin to answer these questions. The computations take
the form of a numerical experiment, in which fluid 2 is displaced by fluid 1, through a
long slot. The displacement model is as in § 2.1. Details of the computational method
are given immediately following. In § 4.1 we present example computations, we outline
the principle differences between these displacements and the axial displacements in
§ 3.3 and we discuss the underlying structure of these displacement flows. Additionally,
we make a number of comments about the appropriateness of our numerical method
for computing displacements with static wall layers. Finally in § 4.2, we present results
of a systematic comparison study of hmax with the computed layer thickness h. This
answers the first of the above questions.

Computational details

The following numerical experimental design was adopted for all computed results.
We consider displacements through a half-slot: (x, y) ∈ [0, 30]× [0, 1]. Flow symmetry
is enforced via the conditions uy(x, 0, t) = 0 and v(x, 0, t) = 0. No-slip conditions are
satisfied at the wall, y = 1. The slot is initially filled with fluid 2, which is flowing
steadily at a constant flow rate imposed via the inflow conditions of u(0, y, t) = 1
and v(0, y, t) = 0. This steady solution for fluid 2 is used as the initial condition
for the displacement. At time t = 0, fluid 1 is injected at x = 0, also with uniform
velocity u(0, y, t) = 1. This ensures compatibility of the initial conditions at the initial
interface between the two fluids. For the parameters we have considered, the steady
fluid-2 initial condition is found to settle to a classical Bingham–Poiseuille velocity
profile only a few slot half-widths downstream from the inflow. We did not study
entry-length specifically (but see Wilson & Taylor 1996), although this would be an
interesting problem in its own right.
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The computations were performed using the computational fluid dynamics (CFD)
code FIDAP, version 8.01. This is a finite-element-based code and we have used a
rectangular mesh with quadrilateral linear basis functions throughout. The mesh is
refined towards the wall and towards the inflow. The effective viscosity of a true
Bingham fluid becomes infinite in unyielded regions of the flow. Consequently, a
viscosity regularization is necessary to model and compute visco-plastic fluid flows
with CFD codes such as FIDAP. In this method, the constitutive laws are replaced
by an effective-viscosity representation: τk,ij ≡ ηkγ̇ij , where the effective viscosity ηk is
defined everywhere. We have used

ηk ≡ µk +
τk,Y

γ̇ + ε
, (4.1)

where ε is a numerical regularization parameter (also having a physical representation
in terms of the limiting low-shear viscosity). Our choice is just one of many possible
choices for ηk . Different meshes and regularizations were tested (the effective viscosity
is implemented as a user-defined subroutine in FIDAP), and the results computed
were found to be relatively robust with respect to small changes in either mesh size
or viscosity regularization. The parameter ε = 10−3 was fixed throughout. We discuss
the usage of regularized viscosity models such as (4.1) in § 4.1.2.

The displacement is handled using the volume-of-fluid (VOF) method. The dis-
cretization and implementation of the VOF method in FIDAP are both explained
well in the Fidap 8 Theory Manual (1998). At base, the VOF method models the dis-
placement as the advection of a passive scalar. Thus, in place of (2.16) a concentration
c(x, y, t) is advected:

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= 0, (4.2)

with c = 1 in fluid 1 and c = 0 in fluid 2. At the interface there is a thin diffuse region
of intermediate concentration in place of the sharp interface. A certain amount of
numerical diffusion is inevitable in such computations, but the interfacial smearing is
generally well controlled and remains confined to 1–2 mesh elements. In this method,
intermediate concentration values are not coupled back into the momentum equations
(e.g. via the definition of concentration-dependent density or rheology). Thus, apart
from numerical diffusion, the advection of a passive scalar is modelled; cf. equations
(2.13)–(2.18).

The computations were continued until t = 25, which corresponds to pumping
5
6

of a slot volume. Small lengthwise variations in the computed residual layer
thickness were often observed (see discussion in § 4.1.1). Thus, in order to estimate
a representative residual layer thickness, h(t) was defined by the following spatial
average:

h(t) = 1− 1

xR − xL
∫ 1

0

∫ xR

xL

c(x, y, t)dxdy, (4.3)

where we have fixed xL = 15 and xR = 25. The layer thickness that we show in our
computed results is always taken at t = 25, i.e. h = h(t = 25). At t = 25, the front
has passed the end of the averaging filter xR = 25. The choice of xL = 15, positions
the beginning of the averaging filter well downstream of the inflow. Experience with
a sequence of progressively longer filters showed that xR − xL ≈ 10 was sufficiently
large to average local variations.

When modelling a visco-plastic fluid with a regularized effective viscosity, such as
(4.1), the fluid will always move under an applied stress, which would not be the case
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Figure 8. Example time evolution for static and transient h(t):
(a) (τ1,Y , τ2,Y , µ1, µ2) = (0.2, 0.5, 0.01, 0.05); (b) (τ1,Y , τ2,Y , µ1, µ2) = (0.35, 0.5, 0.01, 0.05).

for an unyielded visco-plastic fluid adjacent to the wall. To distinguish layers that
would be moving from those that would be static (i.e. if a true visco-plastic were
flowing), we compute the shear stress τ2(x, y, t) and the layer is considered truly static
if

τ2 6 τ2,Y . (4.4)

The criterion (4.4) is not arbitrary. In place of a plastic yield limit we have simply a
very viscous fluid. When τ2 ∼ τ2,Y then

ηk ∼ τk,Y

ε1/2
, (4.5)

and γ̇ ∼ ε1/2. Thus, (4.4) will imply that ||u|| = O(ε1/2h) for any layer close to the
wall, and such layers will be effectively static for timescales less than ∼ ε−1/2h−1. This
estimate is also conservative for h < hmax, since then τ2 < τ2,Y throughout the wall
layer and γ̇ is smaller than ∼ ε1/2. Furthermore, it is worth noting that for a static
wall layer, the stress is largest at the wall, see figure 2(a). Thus, γ̇ decreases with
distance from the wall. In practice, the difference between a static layer, satisfying
(4.4), and one that is still evolving is quite obvious. Figure 8 shows an example of the
time evolution of h(t) for typical static and non-static layers.

4.1. Example computations and displacement flow structure

Two examples of iso-density displacement computations are shown in figures 9(a)
and 9(b), where the dimensionless rheological parameters are: (τ1,Y , τ2,Y , µ1, µ2) =
(0.2, 0.5, 0.01, 0.05) and (τ1,Y , τ2,Y , µ1, µ2) = (0.2, 1.0, 0.005, 0.01), respectively. The fig-
ures plot the concentration profiles at different times throughout the displacement
computation. These dimensional parameters have been selected to enable direct com-
parison with the two axial displacement computations shown in figures 6 and 7.
Before entering into detail, we draw attention to two principal differences between
the fully two-dimensional displacement results and the axial displacement results in
figures 6 and 7.

(i) The concentration profiles appear to propagate steadily along the slot, without
changing shape. In the corresponding axial displacements, only the central part of
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the interface propagates steadily (i.e. the shock). The rest of the interface in the axial
displacement is stretched out behind the front and only asymptotically approaches
hmax.

(ii) The residual wall layers in figures 9(a) and 9(b) have a thickness h that is
significantly less than the asymptotic residual wall layer thickness hmax, observed in
figures 6 and 7.

In § 4.2 we explore the discrepancy between h and hmax in more detail and for a
range of different dimensionless parameters. Here we explain the structure of the
underlying steadily propagating displacement flow.

When fully steady and in a sufficiently long slot, the underlying structure of the
displacement flow is as illustrated schematically in figure 10. There are three distinct
regions. Downstream, sufficiently far ahead of the front, fluid 2 moves axially as
a plane Bingham–Poiseuille flow with a plug region in the centre of the flow, as
illustrated. Upstream, sufficiently far behind the displacement front, there will exist
a two-layer flow. The axial velocity profile should be schematically as in figure 2(a),
with one plug region attached to the wall and one plug region in the centre of the
channel. Close to the displacement front there will exist a region where the flow is
two-dimensional. The lengthscale of the two-dimensional frontal region is unknown,
but appears to be only a few slot widths in our computations.

The frontal region is two-dimensional in two respects. First, the static layers that
are upstream of the frontal region constrict the flow area. Thus, this region behaves
as an expansion and the flow will be two-dimensional provided that the length of this
region is not too long. Second, if we translate coordinates to a frame of reference
that is moving with the constant speed of the displacement front, this frontal region
will contain two-dimensional recirculatory zones for the translated velocity field (see
later in § 5).

The transition between the axial flow regions and the frontal region is unclear. In
particular, we have not studied the exact topology of the yield surfaces for the plug
regions in the centre of the channel. Our numerical method is not fully suitable for
such a study and ideally this type of numerical study should focus on a steady flow,
which requires that the interface be specified.

Figure 11 shows results from one of our computations, close to the displacement
front. In figure 11(a) the rate of strain γ̇ is plotted. Below the lowest contour (the
empty regions), we have τ2 6 τ2,Y . We can see that the highest shear regions are
concentrated, both upstream and downstream, in two shear layers that join one
another in the frontal region. Apart from within this transitionary high shear layer,
we have γ̇ ∼ O(1) throughout the frontal region. Additionally, there is a transitional
region leading into the tip of the wall layer. From figure 11(b) we can see that the wall
layer is not completely uniform. Figure 11(c) shows the streamlines for the flow, very
clearly indicating the expansion effect and the near-axial regions of flow upstream
and downstream.

4.1.1. Footprinting

The irregular contours in the centre of figure 11(a), the uneven layering in figure
11(b) and the slight waviness of the streamlines in figure 11(c), all indicate that the
displacement flow does not propagate absolutely steadily. Although the underlying
steady propagation is believed to exist, the static layers are thought to be only
marginally stable within the frontal region. The small (static) indentations that remain
after the front has passed are believed to result from a footprinting mechanism, which
we describe below.



262 M. Allouche, I. A. Frigaard and G. Sona

(a) (b)

Figure 9. Two-dimensional iso-density displacements: c(x, y, t) = 1 is red, c(x, y, t) = 0 is blue.
(a) Rheological parameters are (τ1,Y , τ2,Y , µ1, µ2) = (0.2, 0.5, 0.01, 0.05); times (right to left):
t = 0.001, 3.8, 7.92, 11.7, 15.8, 20.0, 25.0. (b) Rheological parameters are (τ1,Y , τ2,Y , µ1, µ2) =
(0.2, 1.0, 0.005, 0.01); times (right to left): t = 0.001, 3.64, 7.54, 11.5, 15.4, 19.4, 23.4.

For a true Bingham fluid, the residual wall layer is everywhere static and unyielded.
After the displacement front has passed, if h < hmax, then the stresses in the static
layer will be significantly below the yield stress of fluid 2. Thus, even small finite
perturbations of the flow in the axial two-layer region should not affect the static
layer thickness, i.e. the layers in this region should be stable. Conversely, this also
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Figure 10. Schematic of the displacement flow structure for a fully steady two-dimensional
displacement leaving behind a static wall layer.
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Figure 11. Results of a transient two-dimensional iso-density displacement, close to the displacement
front: (a) contours of γ̇, spaced at intervals ∆γ̇ = 0.1; (b) fluid concentration, c(x, y, t) = 1 is
red, c(x, y, t) = 0 is blue; (c) streamlines with spacing ∆Ψ = 0.02. Rheological parameters are
(τ1,Y , τ2,Y , µ1, µ2) = (0.2, 0.5, 0.01, 0.05) and the fixed time is t = 15.8.

means that any slight non-uniformity or indentation in the static layer can remain
there indefinitely, i.e. it can be footprinted into the layer.

Downstream from the displacement front, fluid 2 is yielded at the wall. Upstream,
fluid 2 is unyielded. By continuity therefore, there will exist a point on the wall at
which the wall stress is equal to the yield stress. The yield surface emanating from
this point forms the boundary of the static residual layer and eventually will curve
to join the interface at some point upstream, behind the propagating displacement
front, see figure 10. This yield surface is therefore located close to the displacement
front, in the region of flow that is two-dimensional. Unlike upstream, in this region
any infinitesimal perturbation in the stress field is able to perturb the surface of the
static layer. In this sense, we believe that the idealized state of a steady and uniform
static layer being left behind a displacement flow is only marginally stable.
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Note that an initial deviation from the idealized state of a steady and uniform
static layer displacement flow is provided in our simulations by the inflow condition.
Displacement front instabilities may also occur at moderate Reynolds numbers due
to hydrodynamic effects (e.g. symmetry breaking in channel expansions). Numerical
errors are also ever present. We have not studied any of these possibilities in detail, but
believe that the slight flow unsteadiness and layer non-uniformity can be explained in
this way. Interestingly, a sufficiently large indentation in the static layer might result
in the generation of shear stress perturbations sufficient to remove the static layers.
We note that the footprinting mechanism that we describe is completely analogous to
the pressure-pulse footprinting that is described in Liu & Mei (1989), who consider
the free-surface flow of a Bingham fluid down an incline.

4.1.2. Using effective-viscosity regularizations for visco-plastic fluid flows

We are cautious in using an effective-viscosity regularization such as (4.1). Such
regularizations have become commonplace in recent years and represent the simplest
way to compute visco-plastic fluid flows, by using the structure of existing CFD codes.
Justification for the use of regularization methods is rarely given and we know of no
rigorous results for transient inertial displacement flows, as here. The effectiveness of
the method for our computations is therefore inferred from results that are valid for
simpler problems.

Considering slow internal flows of a single Bingham fluid, the primary justification
for using (smooth) regularizations such as (4.1) rests on being able to prove con-
vergence of the regularized solution, say uε, to the true solution u, as ε → 0, in an
appropriate norm. An example of how to do this can be found in Glowinski (1983,
p. 83). As with many regularization methods, the limit ε → 0 nearly always leads to
numerically ill-conditioned problems on implementation. Thus, most practical usage
involves a small fixed ε, balancing the requirement of theoretical convergence to the
true Bingham fluid velocity field with computational convergence.

What methods, such as that of Glowinski, do not establish is the convergence
of the two deviatoric stress tensors as ε → 0. The reason here is straightforward,
namely that the stresses are indeterminate for a true Bingham fluid in all regions
where the fluid is unyielded, but are determined everywhere if a regularized viscosity
model is used, i.e. there need not be convergence of the deviatoric stress tensors. The
uncertainty of using a viscosity regularization such as (4.1) is thus focused specifically
on predicting the positions of yield surfaces and knowing whether computed regions
of low-shear flow would in fact be unyielded had the true constitutive laws (2.17) and
(2.18) been used. An interesting and very under-utilized result, which can help here,
is the stress minimization principle of Prager (1954). This result often implies that, of
all admissible stress tensors, the deviatoric stress tensor of the Bingham fluid is that
which is least likely to yield. Hence, in situations when the stress tensor corresponding
to (4.1) is admissible, flow regions where τk 6 τk,Y is computed can be considered as
unyielded for the true Bingham fluid rheology. This gives a one-sided bound at least.

Clearly, whether or not effective viscosity regularization is a viable computational
method is problem-dependent. If the goal is simply to determine the velocity field, then
effective-viscosity regularization is usually viable. When this is not the case, the chief
problem in using (4.1) becomes one of interpretation. The theoretical convergence
results give ||u− uε|| ∼ δ(ε), where δ(ε) = o(ε), and the convergence norm is typically
H1. Thus, wherever γ̇(uε)� δ(ε), we expect that the deviatoric stresses also converge,
i.e. in those regions where the true Bingham fluid stresses are determinate. Similarly,
small γ̇(uε) will be found in the same regions of flow as for the true Bingham fluid.
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However, in regions where γ̇(u) is small, a true Bingham fluid can have both true plug
(i.e. unyielded) and pseudo-plug regions. Without further analysis, it is often difficult to
distinguish between true plug and pseudo-plug regions for results computed using an
effective-viscosity regularization. Good examples of true and pseudo-plug behaviour
are given in Szabo & Hassager (1992), Walton & Bittleston (1991) and Wilson
(1993a, b).

We turn specifically now to our problem, which is inertial, fully transient and two-
fluid. We first remark that the inertial terms are not dominant for the dimensionless
parameter values that we have used, as is evidenced by the steadily propagating
computed displacements. If ||u − uε|| ∼ o(ε) were valid for the analogous steady
problem, as effectively we assume, then we must expect that this will hold for the
transient problem only over time intervals ∆t = O(1) (i.e. viewing (4.1) purely as a
perturbation method); hence the finite simulation time t = 25. As regards having
multiple fluids, we comment only that both fluids are yielded close to the advancing
displacement front, where the flow is two-dimensional. We can therefore expect that
the stresses and velocities, computed from the regularized model (4.1), will be close
to those of the true Bingham model in this region. Insofar as the velocities and
stresses in this region are believed to determine the layer thickness, we believe our
computations, based on (4.1), to be reasonable. However, as pointed out above, there
could still be problems in interpreting certain regions of low shear that we compute.

We consider first the upstream wall layers. Suppose the fluid-2 residual layer has
thickness h < hmax. Once the displacement front has passed, the flow is observed to
become near-axial. If we now compute the corresponding axial two-layer velocity pro-
file (for a true Bingham fluid), this velocity profile will have a plug region at the wall,
throughout fluid 2, and a second plug region in the middle of the fluid-1 layer, e.g. see
figure 2(a). Due to the no-slip condition, each plug predicted at the wall has zero veloc-
ity. Thus, no extensional rate of strain exists in the wall layer and we can expect that
the axial shear flow scaling remains valid throughout the static wall layer, i.e. a static
wall layer is truly static for a true Bingham fluid. Interpreting the two unattached plug
regions that are shown schematically in figure 10, in the mid-channel, is much harder.
Either could consist of true plug regions and/or pseudo-plug regions. Probably, down-
stream the fluid-2 plug will be a true plug, with only a pseudo-plug possible in the
transition to the frontal region. Upstream, if the footprinting mechanism results in a
slowly varying static wall layer thickness (i.e. for a physical reason, not a numerical rea-
son), then the plug will almost certainly consist of true plug and pseudo-plug regions,
also with a possible transitional pseudo-plug in the transition to the frontal region.

It is clear that if we wish to study the topological behaviour of the yield surfaces
in the channel centre, the method we have used is not viable. However, since the
interface, denoting the boundary of the static wall layer with fluid 1, is not a yield
surface, the method appears to be quite adequate for predicting the residual layer
thickness, and it is purely for this purpose that it is used.

4.2. Parametric variations in the layer thickness

In order to make a direct comparison between the computed residual layer h and hmax,
two series of computations have been carried out. The first series of computations is
based on the parameters

(τ1,Y , τ2,Y , µ1, µ2) = (0.2, 0.5, 0.01, 0.05)

(see figure 9a) with variations in each of the four rheological parameters being
examined separately. The second series of computations is analogous, but centred on
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Figure 12. Comparisons of h (symbols) and hmax for iso-density displacements. Parametric variation
centred about (τ1,Y , τ2,Y , µ1, µ2) = (0.2, 0.5, 0.01, 0.05): (a) variation with τ1,Y ; (b) variation with τ2,Y ;
(c) variation with µ1; (d) variation with µ2. Points marked with a circle are transient layers, those
marked with a cross are static.

the parameters
(τ1,Y , τ2,Y , µ1, µ2) = (0.2, 1.0, 0.005, 0.01)

(see figure 9b). These two comparisons are plotted in figures 12 and 13.
The results plotted in figures 12 and 13 are qualitatively similar, suggesting consis-

tency, but are also quite surprising. The variation of h with the parameters τ1,Y , τ2,Y

and µ1 appears to be almost opposite to that of hmax. Intuitively, one might expect
that the residual layer thickness would increase with the yield stress of the displaced
fluid τ2,Y , but this is not the observed effect. Although hmax is not a direct prediction
of the layer thickness, it appears to vary with τ2,Y in the way that is physically intu-
itive. Similarly, physical intuition suggests that increases in either τ1,Y or µ1 should
decrease the residual layer thickness. Although hmax decreases with these parameters,
h is constant, or even slightly increasing. In contrast, physical intuition would predict
that h increases with µ2, and this is indeed observed, whereas the determination of
hmax is independent of µ2. Where hmax does give a good prediction is in dividing the
layers that are transient h > hmax, from those that are static h < hmax.

4.2.1. Simple explanation for h < hmax

That static residual layers h, computed from a fully two-dimensional model, should
be less than hmax is to be expected. The fully two-dimensional flow is likely to generate
higher stresses at the displacement front than those in an axial flow with the same
interface position. Since the definition of hmax considers an axial flow in which the
yield stress is attained exactly at the wall, any displacement flow that generates larger
stresses is likely to leave only static layers h < hmax.
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Figure 13. Comparisons of h and hmax for iso-density displacements. Parametric variation cen-
tred about (τ1,Y , τ2,Y , µ1, µ2) = (0.2, 1.0, 0.005, 0.01): (a) variation with τ1,Y ; (b) variation with τ2,Y ;
(c) variation with µ1; (d) variation with µ2. Points marked with a circle are transient layers, those
marked with a cross are static.

5. Steady two-dimensional displacements and static layer thickness selection

It is evident from the large discrepancy between computed h and hmax, in § 4.2,
that the two-layer axial model is far too simplistic to be able predict the static layer
thickness h. The results in § 4 also suggest that these transient displacements are
characterized by an underlying steadily propagating two-dimensional displacement
flow, which leaves behind a uniform static wall layer. We turn now to an analysis of
this basic steady flow in the hope of better understanding the selection of static wall
layer thickness.

We succeed in offering a simple prediction of static layer thickness that is in good
agreement with the computed results of § 4. This prediction is based on the notion
of a limiting static layer thickness, which approximately minimizes the rate of visco-
plastic dissipation local to the displacement front. It is argued heuristically that this
limiting layer thickness will be close to the limiting layer thickness, hcirc, at which
the streamlines in fluid 2 begin to recirculate ahead of the displacement front, when
viewed in a steadily advancing frame of reference. In § 5.1 we introduce the steady-
state displacement model. In § 5.2 we show that fluid 2 will recirculate for uniform
static layers h < hcirc, we compare the results of § 4.2 with parametric variations in
hcirc, and we explain why this limit should approximately minimize the local rate of
dissipation.
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5.1. Steady-state displacement model

We suppose dimensionless parameters such that hmax > 0 and suppose that the
displacement profile propagates steadily with a speed S in the positive x-direction,
leaving behind a uniform static wall layer. Both the interface and velocity field remain
steady in a frame reference moving with the displacement front. Writing X = x− St,
Y = y, U = u− S , V = v and P = p+ x/F , the steady equations of motion become

r

[
U
∂U

∂X
+ V

∂U

∂Y

]
= −∂P

∂X
+

∂

∂X
τ1,XX +

∂

∂Y
τ1,XY − b, (X,Y ) ∈ Ω1, (5.1)

r

[
U
∂V

∂X
+ V

∂V

∂Y

]
= − ∂P

∂Y
+

∂

∂X
τ1,Y X +

∂

∂Y
τ1,Y Y , (X,Y ) ∈ Ω1, (5.2)

U
∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+

∂

∂X
τ2,XX +

∂

∂Y
τ2,XY , (X,Y ) ∈ Ω2, (5.3)

U
∂V

∂X
+ V

∂V

∂Y
= − ∂P

∂Y
+

∂

∂X
τ2,Y X +

∂

∂Y
τ2,Y Y , (X,Y ) ∈ Ω2, (5.4)

0 =
∂U

∂X
+
∂V

∂Y
, (X,Y ) ∈ Ωk, k = 1, 2, (5.5)

where Ωk denotes the region occupied by fluid k. Both rate of strain and shear
stress definitions are unchanged by the coordinate transformation; the constitutive
equations remain (2.17) and (2.18).

The length of the domain in the X-direction is taken to be X ∈ [−L, L], where
L is considered sufficiently large for the flow to become axial at X = ±L. The fluid
domains and flow structure are assumed to be schematically as in figure 10. Thus,
Yi(X) = 0 for X > 0 and Yi(X) > 0 for X < 0. Only uniform static layer thicknesses
h ∈ (0, hmax) are considered. Therefore, upstream at X = −L, Yi(X) = Y−L ∈ (Yi,min, 1).
Furthermore, since we consider properly steady propagation, the interface Y = Yi(X)
is assumed to become parallel to the wall some distance before X = −L. The
kinematic equation for the interface is

U
∂Yi(X)

∂X
= V , (5.6)

from which it follows that the interface is a streamline for the steady flow.

5.1.1. Boundary conditions

Boundary conditions for the transformed velocity on Y = 0 and Y = 1 are

V (X, 0) = 0, (5.7)

τk,XY (X, 0) = 0 =⇒ ∂U

∂Y
(X, 0) = 0, (5.8)

U(X, 1) = −S, (5.9)

V (X, 1) = 0. (5.10)

The downstream boundary condition is that of a plane Bingham–Poiseuille flow of
fluid 2, translated by the mean propagation speed, i.e.

U(L, Y ) = UL(Y ), V (L, Y ) = 0, (5.11)
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where

UL(Y ) =


3

Y2,Y + 2
− S, Y ∈ [0, Y2,Y )

3

Y2,Y + 2

[
1− (Y − Y2,Y )2

(1− Y2,Y )2

]
− S, Y ∈ [Y2,Y , 1],

(5.12)

where Y = Y2,Y is the position of the yield surface. This position is given by

Y2,Y =
1

ξ(B2)
, (5.13)

where ξ(B2) > 1 is the root of the parametric cubic equation (3.24) (see § 3.2). B2 is
the Bingham number of fluid 2:

B2 =
τ2,Y

µ2

=
τ̂2,Y D̂

µ̂2Û0

. (5.14)

Note from (5.12) that ∫ 1

0

UL(Y )dY = 1− S, (5.15)

which is the transformed version of the flow rate constraint (3.10).
Upstream, the inflow is an axial flow with a static wall layer (e.g. figure 2a),

translated by the mean propagation speed, i.e.

U(−L, Y ) = U−L(Y ), V (−L, Y ) = 0, (5.16)

where

U−L(Y ) =



3

Y1,Y + 2Y−L
− S, Y ∈ [0, Y1,Y )

3

Y1,Y + 2Y−L

[
1− (Y − Y1,Y )2

(Y−L − Y1,Y )2

]
− S, Y ∈ [Y1,Y , Y−L]

−S, Y ∈ (Y−L, 1],

(5.17)

where Y = Y1,Y is the position of the yield surface in fluid 1. This position is given
by

Y1,Y =
Y−L
ξ(B̃1)

. (5.18)

Note from (5.17) that ∫ 1

0

U−L(Y )dY = 1− S. (5.19)

5.1.2. Stream-function formulation

For the remainder of this paper we are concerned solely with the generic behaviour
of the streamlines. We define the stream function Ψ (X,Y ) in the usual way:

Ψ (X,Y ) ≡
∫ (X,Y )

(0,0)

UdY − VdX. (5.20)
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Equations (5.1)–(5.5) can be reduced to a single fourth-order equation for the stream
function, valid within each fluid domain Ωk:

rk[ΨY (∇2Ψ )X −ΨX(∇2Ψ )Y ] =

[
∂2

∂Y 2
− ∂2

∂X2

]
τk,XY + 2

∂2

∂X∂Y
τk,XX. (5.21)

Note that τk,XX = −τk,Y Y , τk,XY = τk,Y X , r1 = r, r2 = 1, and the constitutive equations
need to be rewritten in terms of the second partial derivatives of the stream function,
but this is a purely algebraic task.

The boundary conditions for Ψ at inflow and outflow are

Ψ (±L, Y ) = Ψ±L(Y ) ≡
∫ Y

0

U±L(Y )dY , (5.22)

ΨX(±L, Y ) = 0. (5.23)

Boundary conditions for Ψ at the wall are

Ψ (X, 1) = 1− S, ΨY (X, 1) = 0, (5.24)

and on the slot centreline

Ψ (X, 0) = 0, ΨY Y (X, 0) = 0. (5.25)

Across the interface, both Ψ and its normal derivative are continuous. Since the
interface intercepts the X-axis at X = 0, it is clear that

Ψ (X,Yi(X)) = 0. (5.26)

Therefore, as well as (5.19), we have that∫ Y−L

0

U−L(Y )dY = 0. (5.27)

Combining (5.19) and (5.27) with the fact that U−L(Y ) = −S for Y ∈ [Y−L, 1] leads
to ∫ 1

Y−L
U−L(Y )dY = −S[1− Y−L] = 1− S =⇒ S ≡ 1

Y−L
. (5.28)

Equation (5.28) expresses the simple kinematic relationship between the width of a
steadily propagating displacement finger and the speed of propagation.

5.2. Generic streamline behaviour and hcirc

Equation (5.27) effectively says that, whatever flows in at X = −L for Y ∈ (0, Yi)
must also flow out. Consequently, the fluid-1 streamlines are always recirculating in
Ω1. At the inflow, from (5.17) and (5.28) it can be seen that U−L(0) > 0, U−L(Y−L) < 0
and U−L(Y ) is decreasing in [0, Y−L]. Thus, there is a single zero of U−L(Y ) in [0, Y−L]
and a single maximum of Ψ−L(Y ) in [0, Y−L]. The fluid-1 streamlines enter Ω1 along
the interval [0, Y−L,zero) and exit Ω1 along the interval (Y−L,zero, Y−L], where Y−L,zero is
the single zero of U−L(Y ). Note also that for Y ∈ [0, Y1,Y ], fluid 1 is unyielded and
the stream-function is simply given by Ψ−L(Y ) = Y U−L(0). The fluid-2 streamlines
at the inflow are parallel and are uniformly spaced within the static wall layer, i.e.
Ψ (X,Y ) = 1− SY for Y ∈ (Y−L, 1].

At the outflow, from (5.12) we can see that UL(Y ) is decreasing for Y ∈ [0, 1], and
strictly decreasing for Y ∈ (Y2,Y , 1]. Thus, UL(Y ) has a single zero if and only if
UL(0) > 0. If UL(0) < 0, then there are no zeros, and if UL(0) = 0, then there are
zeros ∀Y ∈ (Y2,Y , 1]. We consider these two principal cases separately.
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Figure 14. Schematic illustration of the two types of streamline behaviour: (a) no recirculation in
fluid 2; (b) with recirculation in fluid 2.

(i) UL(0) < 0: Since ΨL(0) = 0 and ΨL(1) = 1−S < 0, this implies that ΨL(Y ) < 0,
∀Y ∈ [0, 1]. In this case there are no zeros of ΨL(Y ) for Y ∈ [0, 1]. The streamlines
that enter Ω2 at X = L for Y ∈ (0, 1) will exit Ω2 at X = −L for Y ∈ (Y−L, 1),
through the static layer.

(ii) UL(0) > 0: In this case, ΨL(Y ) > 0 in a neighbourhood of Y = 0, and ΨL(Y )
has exactly one zero for Y ∈ [0, 1], say Y = YL,zero. The streamline Ψ = 0 that enters
Ω2 at X = L and Y = YL,zero cannot exit Ω2 at X = −L or at Y = 1, since the
boundary conditions there prevent Ψ = 0. The only possibilities now are that the
streamline terminates either by intercepting the interface, creating a saddle point
(thought to be unlikely in a steady propagation), or intercepts the slot centreline. In
either case, this zero streamline will divide Ω2 into two distinct regions. The fluid-2
streamlines that enter Ω2 at X = L for Y ∈ (YL,zero, 1], will exit Ω2 at X = −L for
Y ∈ (Y−L, 1], through the static layer. The streamlines that enter Ω2 at X = L for
Y ∈ [0, YL,zero) must also exit Ω2 at X = −L in this same interval. Since ΨL(Y ) will
have a single maximum for Y ∈ [0, YL,zero), there will be a recirculation zone in fluid 2.

Assuming that neither fluid recirculates unnecessarily, there will be just two qualita-
tively different patterns of the streamlines, which we illustrate schematically in figure
14. In making this statement, we ignore the marginal state when UL(0) = 0.

From (5.12) we see that UL(Y ) depends upon Y2,Y (which is a function only of B2),
and on the propagation speed S , which is defined in terms of the static layer thickness
by (5.28). Thus, the marginal state UL(0) = 0, which delineates the two different
streamline behaviours shown in figure 14, also defines a critical layer thickness hcirc
that controls streamline recirculation in fluid 2. For static layers that are thinner than
hcirc, fluid 2 will recirculate. It is easily seen that

hcirc(B2) =
ξ(B2)− 1

3ξ(B2)
, (5.29)

which is sketched in figure 15. Figure 16 shows examples of inflow and outflow stream
functions and velocities, for values of h slightly above and below hcirc, with rheological
parameters (τ1,Y , τ2,Y , µ1, µ2) = (0.2, 0.5, 0.01, 0.05).
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Figure 15. The function hcirc(B2), plotted against 1/B2.
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Figure 16. The functions Ψ±L(Y ), U±L(Y ) (τ1,Y , τ2,Y , µ1, µ2) = (0.2, 0.5, 0.01, 0.05). Top figures:
h = 0.2 (no recirculation); bottom figures h = 0.1 (recirculation). ΨL(Y ) and UL(Y ) are marked
with the dashed line. Vertical line denotes the interface.

5.2.1. Comparisons of hcirc with h

In figures 17 and 18 we have plotted the parametric variation of hcirc against each
of the parameters τ1,Y , τ2,Y , µ1 and µ2 for the same ranges as in figures 12 and 13. We
also compare with the computed values of h, from § 4.2. For those h that are static,
the agreement is very good. Not only does hcirc give a good quantitative prediction of
static h, but also the parametric variations in h are predicted remarkably well.



Static wall layers in visco-plastic displacements 273

0.30

0.25

0.20

0.15

0.10

0.05

0.3 0.4 0.5 0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.04 0.08 0.12 0.04 0.08 0.12

0.1

0.2

0.3

0.4

h

h

τY,1 τY,2

µ1 µ2

(a) (b)

(c) (d )

Figure 17. Comparisons of h and hcirc for iso-density displacements. Parametric variation cen-
tred about (τ1,Y , τ2,Y , µ1, µ2) = (0.2, 0.5, 0.01, 0.05): (a) variation with τ1,Y ; (b) variation with τ2,Y ;
(c) variation with µ1; (d) variation with µ2. Dashed line for hcirc > hmax. Points marked with a circle
are transient layers, those marked with a cross are static.

5.2.2. An heuristic physical explanation for hcirc ≈ h
We are unable to explain precisely why hcirc should give such a good prediction

of the static layer thickness. However, the following heuristic physical explanation is
believed to be essentially correct.

First of all, note that for the parameters considered, the plastic viscosities µk are
generally small but the yield stresses τk,Y are not small. The velocities are ∼ 1, due to
the scaling, and rates of strain are consequently O(1). This means that the effective
viscosities in yielded regions are typically ∼ τk,Y . Consequently, Reynolds numbers
can be interpreted as having size ∼ 1/τk,Y in the displacements computed. Thus,
although not strictly slow, inertial effects are probably not particularly important in
significant regions of the flow (although included for completeness).

If the flow is essentially non-inertial, we hypothesize that the displacement front
configures itself locally to minimize the visco-plastic dissipation rate functional D(U ),
close to the displacement front, i.e.

D(U ) =
∑
k=1,2

∫
Ωl,k

µkγ̇
2(U ) + τk,Y γ̇(U )dΩ, (5.30)

where Ωl,k = Ωk
⋂

[−l, l] × [0, 1] and the flow becomes axial outside of X ∈ [−l, l].
Note that the far-field flows are in equilibrium. For any parallel static layer at large
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Figure 18. Comparisons of h and hcirc for iso-density displacements. Parametric variation cen-
tred about (τ1,Y , τ2,Y , µ1, µ2) = (0.2, 1.0, 0.005, 0.01): (a) variation with τ1,Y ; (b) variation with τ2,Y ;
(c) variation with µ1; (d) variation with µ2. Dashed line for hcirc > hmax. Points marked with a circle
are transient layers, those marked with a cross are static.

negative X, the far-field energy equation for (5.1)–(5.5) is equivalent to that derived
from the axial flows. In this sense, it is believed that the far-field conditions do not
influence the layer selection.

Suppose that h ∈ (hcirc, hmax). As h is decreased in this range, the peak value
of Ψ−L(Y ) decreases and we can expect that the contribution to D(U ) from Ωl,1
decreases. Essentially, there is less of fluid 1 flowing in and out of Ωl,1 and the region
in which fluid 1 can turn around is getting larger. In fluid 2, we suppose that the
distortion of the streamlines around the region Ωl,1 as h decreases (see figure 14a)
does not much affect the contribution to D(U ) from Ωl,2. Note that there is no
contribution to D(U ) from the static wall layer region and downstream from Ωl,2 the
far-field visco-plastic dissipation rate is completely unaffected by any change in h.

Now consider what happens for h < hcirc, when fluid 2 must recirculate. A streamline
Ψ = 0 enters Ω2 at (X,Y ) = (L, YL,zero). It is notable that YL,zero → Y2,Y as h→ hcirc.
Thus, the region of Ωl,2 in which recirculation takes place is initially O(lY2,Y ). There is
a large change in the streamline pattern in Ωl,2 associated with the transition h→ hcirc.
Since always τ1,Y < τ2,Y when static layers exist (and typically also µ1 < µ2), we can
suppose that the increased contribution to D(U ) from Ωl,2 at the transition h→ hcirc
is large, relative to the decrease due to Ωl,1. We therefore suppose that there is a local
minimum in D(U ) very close to h = hcirc and that this local minimum is responsible
for selecting h.
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6. Summary and discussion
Displacement of visco-plastic fluids in a long slot allows the possibility that com-

pletely static layers of the displaced fluid can be left on the walls of the slot after
displacement. For symmetric displacements we have shown that the possibility of static
layers existing is governed by a single curve relating a critical ratio of the yield stresses
to the Bingham number of the displacing fluid B1 (see figure 5). For yield stress ratios
ϕY below the critical ratio, the maximum static layer thickness hmax depends only on
B1 and ϕY for iso-density displacements. For axial displacements with a density differ-
ence, a third parameter ϕB also controls the maximum layer thickness hmax. The pa-
rameter ϕB is a ratio between the buoyancy stress and the yield stress of the displaced
fluid. It is interesting to note that although hmax is reduced significantly by increasing
ϕB , the critical curve in the (B1, ϕY )-plane denoting hmax = 0 is not dependent on ϕB .

Two-dimensional transient displacement computations show also that static residual
layers of thickness h exist. Typically static h that are computed from the transient
displacements are significantly less than hmax. Considering a steady-state displacement
model, we have shown that static h are predicted remarkably well by the critical layer
thickness hcirc, at which the displaced fluid recirculates. As a practical result, this is
possibly the most important contribution of this paper.

We have argued that h = hcirc (approximately) locally minimizes the rate of visco-
plastic dissipation of kinetic energy. Whilst we believe this explanation to be correct,
the explanation is likely only to be valid within parameter ranges where inertia is
relatively unimportant.

When hcirc > hmax, static h cannot be predicted by hcirc, even though hcirc is
well defined. The computed results in figures 17 and 18 lie close to hcirc even when
hcirc > hmax. However, this is purely due to the choice of time at which h was computed.
At longer times these residual layers decrease, i.e. they are not static. We have not
studied this parametric regime extensively. However, in some computations it was
observed that h(t) < hmax at long times. This is contradictory and not well understood.
On the one hand, the displacement front has moved and the axial displacement model
should govern interface movement. For this model, we have seen that h(t)→ hmax as
t→∞. On the other hand, for thin layers approaching the thickness of a mesh spacing,
numerical diffusion will become significant (i.e. for the two-dimensional results, we
have no sharp interface). Secondly, as discussed earlier, static layer non-uniformities
and consequent coupling with the axial flow seem inherent and will effectively reduce
hmax in any two-dimensional numerical computation. Finally, it is unclear whether or
not the visco-plastic dissipation functional D(U ) might have other local minima for
h ∈ (0, hmax) when hcirc > hmax.

The critical layer thickness hcirc depends only on the Bingham number of the
displacing fluid B2. Using

h = min{hmax, hcirc}
as an estimate of static layer thickness appears to be a reasonable engineering rule
for iso-density displacements: approximately correct for hcirc < hmax and a little
conservative for hcirc > hmax. The advantage here is that h = min{hmax, hcirc} depends
only on three dimensionless parameters (ϕY , B1, B2) and is extremely quick and simple
to compute. The computed displacements depend on four dimensionless parameters
(τ1,Y , τ2,Y , µ1, µ2), and need sophisticated CFD software.

Transient computations of buoyant displacements have not been presented. The
effect of inertia on these displacements also needs to be better understood. From a
practical perspective, we have concentrated on flows where inertial effects are believed
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to be minimal (except perhaps close to the displacement front). The phenomenon of
a static layer is believed to be more acute for slower flows, for which visco-plasticity
begins to dominate inertia. For faster flows, it is likely that instabilities arise, either in
the parallel flow behind the displacement front or at the front itself. Although these
would be of scientific interest to study, from a practical perspective any instabilities
are likely to improve the overall displacement and therefore are good. We have
focused on the flows that we believe are more likely to result in stable static layers.
An in-depth study of both inertia and buoyancy effects is ongoing.

Existence and uniqueness of a solutions to equations (5.1)–(5.5) with the assigned
boundary conditions is a non-trivial problem. We tackle this problem in a companion
paper (Frigaard, Scherzer & Sona 1999), including the interesting question of which
range of values of h can admit solutions.

There are many possible extensions of the work presented here (for example to
inclined slots and to Herschel–Bulkley fluid rheologies). The question of convergence
of the results towards equivalent results for miscible (and/or) Newtonian fluid dis-
placements also merits attention. Presumably, truly steady-state displacements with a
static layer would not be possible in either case. It is interesting to speculate whether
the prediction methodology behind hcirc can shed light on the problem of selecting the
finger width in a miscible Newtonian displacement, i.e. that part of the displacement
front that propagates steadily.

We are grateful to the management of Schlumberger for their permission to
publish this paper. The work of Giuliano Sona was completed during an internship
at Schlumberger Dowell. This internship was partly funded by the European Union
through the Leonardo da Vinci Community Programme.
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